UNCLASSIFIED

o 400371

Reproduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED



NOTICE: When govermment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the sald drawlngs, specifications, or other
data 1is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



TM-738 001 00

Z
w
w
Q
z
w
2
o
wl
wn
[
2
o
m
<
[%2]
x
s
<
=
w
o
w
=
o
w

CONTEXT FREE LANGUAGES




SDC Document No.

AFCRL-63-58 ™-738/001/00

Technical Memorandum

SDG
T SERIES

This document was produced by SDC in connection with
a research project co-sponsored by SDC's independent

research program and Contract AF 19(628)-485, Project
No. L4641, Task No. L6410,

SCIENTIFIC REPORT NO. 2

SOME REMARKS ABOUT SEQUENCES IN

CONTEXT FREE LANGUAGES SYSTEM
by
Seymour Ginsburg DEVELOPMENT
System Development Corporation
Joseph S. Ullian CORPORATION
University of Chicago
31 January 1963 2500 COLORADO AVE.
Prepared for
ELECTRONICS RESEARCH DIRECTORATE SANTA MONICA
AIR FORCE CAMBRIDGE RESEARCH IABORATORIES
OFFICE OF AEROSPACE RESEARCH CALIFORNIA

UNITED STATES AIR FORCE

Excepting agencies of the United States Govern-
ment, permission to quote from this document or
to reproduce it, wholly or in part, should be

obtained in advance from the System Development
Corporation.




g s

(r © 31 January 1963 -1- 1M-738/001/00
(Page 2 Blank)

Requests for additional copies by Agencies of the Department of Defense,

their contractors, and other government agencies should be directed to:

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

Department of Defense contractors must be established for ASTIA services
or have their "need-to-know" certified by the cognizant military agency of

their project or contract.
All other persons and organizations should apply to:

U. S. DEPARTMENT OF COMMERCE
OFFICE OF TECHNICAL SERVICES
WASHINGTON 25, D. C.



e

-

&

31 January 1963 -3- ' ™-738/001/00
(Puge 4 Blank)

ABSTRACT

The following conjecture is considered:

(*) It is unsolvable vhether a language (= context free langusge)

contains a sequence.
Vhile this conjecture is left unresolved, a number of results pertaining to it
are obtained. For example, the unsolvability of vhether a language contains
the set {ababal...ba™/n 2 11, implies (*). It is shown that (*) is equivalent
to the unsolvability of whether a language contains a chain of a special form.
Several facts about whether a language contains a specific sequence are also
demonstrated. In particular, it is shown that wvhether a language contains a
given sequence is unsolvable, but whether a language contains a given ultimately

periodic sequence is solvable.
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SOME REMARKS ABOUT SEQUENCES IN
CONTEXT FREE LANGUAGES

Introduction

In (6] it vas shown by a complicated argument that for two (context free)
languages 1‘1 and 142, it is recursively unsolvable vhether there exists a com-
plete sequential machine mapping 1‘1 into 1.2 Now an alternative (and quite
simple) proof of this fact would follow from verification of the following
conjecture: It is recursively unsolvable whether a language contains an
ultimately periedic sequence. [For the language {a"/n > 1} can be mapped into
an arbitrary language L by a complete sequential machine if and only if L con-
tains an ultimately periodic sequence.] Neither this conjecture nor its
analogue for sequences in general has been settled, but they have provided
motivation for the study of sequences in languages. The present paper sets
forth several results about sequences in languages and shows how some of the

questions vhich remain unansvered may be reduced.

The paper is divided into four sections. Section 1 reviews the terminology
of langusges. In section 2 a language is exhibited vhich contains exactly one
sequence, s sequence vhich is not ultimately periodic. Using this language it
is shown that the unsolvability of whether a language contains a set of vords
of a certain fora implies the unsolvability of whether a language contains a
sequence. In section 3 the solvability of a language containing a sequence is
proved equivalent to the solvability of a language containing at least one’
special kind of chain. In section U it is shown that vhether a language con-
tains & given sequence is unsolvable, but vhether a language contains a given
ultimately periodic sequence is solvable.
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Section 1. Preliminaries

Let T be a finite nonempty set and let 6(L) be the free semigroup with
identity ¢ generated by L. (Thus 8(L) is the set of all finite sequences, or
words, of T and ¢ is the empty sequence.) We shall be considering certain sub-
sets of (L) which are called "context free languages," or "languages" for
short. These langusges arose in the study of natural langusges (2] and have
been shown to be identical with the components in the "ALGOL-like" artificial

languages which occur in data processing [4].

A grammar G is a 4-tuple (V,P,L,S), vhere V is a finite set, L is a subset
of V, S is an element of V-L, and P i{s a finite set of ordered pairs of the
form (§,w) vith € in V-T and v in 8(V). P 1s called the set of productions of
G. An element (£,w) in P is denoted by € = w. If x and y are in 8(V), then
we write x = y if either x = y or there exists a sequence x = Xys XoyeeerX '®
Y (n > 1) of elements in 8(V) with the following property. For each i < n there
exist 8, bi’ §i, vy such that X, = ‘1§1b1’ Xa" aivibi, and gi .. The
language .generated by G, denoted by L(G), 1s the set of words {w/S = v, v in
8(Z)1. A context free language (over T) is a language L(G) generated by seme
grammar G = (V,P,I,5). Unless otherwise stated, by a language we shall alwvays
mean & context free language.

If A and B are subsets of 6(L), then the set of words {ab/a in A, b in B)
is called the product of A and B and is vritten AB. If A (or B) consists of

Just one word, say A = {a} (B = {b}), then aB (Ab) is written instesd of AB.

)

O
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For each word x in 6(X), |x| denotes the length of x.
2
If A and B are languages, then so are AB, A + B,(l) and A*( ) (3].

The family of regular sets is characterized as the smallest family of sub-
sets of 9(F) containing the finite sets and closed under the operations of
union, product, and # [9]). Each ‘egular set is a language [3].

Let Xj50eesX 5eee (written XpeorX oee ) be an infinite sequence of elements
of . The sequence is said to be contained in a set H of vords (or K contains
the sequence) if the word xl...xi is in H for each i. A sequence XpeooXoeos is

said to be ultimately periodic (u.p.) if there exist integers n, and p so that

f
Xpep ® *n for n 2 n,. An infinite sequence of words "1} is said to be a chain

ir 'i is an initial subword of "1-0-1 for each i, i.e., Vi "™ wiui for some u,
in 8(Z)-¢. A language is said to contain a chain if the language contains each

wvord in the chain.

We are interested in whether a language containing an u.p. sequence is
unsolvable and vhether a language containing a sequence is unsolvable; and we
shall present & number of results which have arisen during a study of these

two problems.

(I)Both 4" and "U" are used to denote set union.

[
(2)11‘ A is a set of words, then A* =¢ +U An, vhere Al = A and A“l = Aik.
1

—od
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Section 2. Distinguished Sequences

Consider the question of whether or not a language containing a sequence
must contain an u.p. sequence. By application of a systematic procedure, ve
can effectively enumerate those languages which contain no sequences. Since ve
can test a given language to see if it contains a specified u.p. aequcnce,‘”
and since we can effectively enumerate the u.p. sequences, we also have a
systematic procedure for effectively enumerating those languages which contain
u.p. sequences. Therefore, if each language containing a sequence contained an
u.p. sequence, ve would have a decision precedure for determining whether or
not a given language contained an (u.p.) sequence. However, we now show that

there are languages which contain a sequence but no u.p. sequence.

Notation. Given a word w and an element b in I, let #b(w) be the number of

occurrences of b in w.

Theorem 2.1. There exists a language which contains a sequence but no u.p.

sequence,

Proof. let G, = (vl,pl,z,g), vhere T = {a,bl, V;=8UEL, and P, = fg =v,
€ - af, £ - bfa}. Let L = L(Gl). Clearly L, = {u/u = vba#b("), w in 6(a,b)].
If u = wba" is in Ll, then wban'ban"'l is in Ll and is the proper extension of u

in 1‘.|. of smallest length. Hence I‘.l contains the chain C = b, bba, bbal 2
bbabaZbal, ... .

’

(3)See Theorem .2,



A 3 T | Bt o i

31 January 1963 -9- ™-738/001/00

Let G, = (V,,P,,T,8), vhere V,-L = (§,v,y} and P, = {§ = vy, v = ba,
y=ay, y=by, y=-bya, v =b, v ~ay, v=by, v=yva}, Let L, = L(Ga).
Then

L, = fu/u = wba®, 1 < n < #o(v), v in 8(a,b) bo(a,b)}.

Let L3-b-0711b+12. Note that each word in b + L,b ends in b, and each
word in 1.2 ends in a. Let D be the sequence bbabaaba3b .+ Obviously D is

not u.p. We shall show that L3 contains D but no other sequence.

Each word in D ending in b is in b + I.l'b. Since each word in D ending in
a is in Lz, D is contained in L3. Now let E be any sequence contained in I.3
Neither a nor ba is in 1'2’ thus neither is in L3. Therefore E begins with bb.
Now suppose that E begins with buba®, n 2 O, for some word u in 8(a,b). Mo

cases arise.
() n = #(bu). Then buba®™? 18 not in L,, and thus not in L3. Hence
E must begin with buba’b.

(8) n < #o(bu). Since n # #o(bu), buba® 1s not in L. Thus E cannot

begin with bubalb, that 1s, E begins with buba®*l,

By induction it therefore follows that E = D. Hence D is the only

sequence contained in L3.

Using the languages constructed in Theorem 2.1 we now show that if either
of two problems is recursively unsolvable, then so is the problem of vhether

a given language contains a sequence.
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Let D, L, Ly, and Ly be as in Theorem 2.1 and let 6 = 6(a,b). For M and
[ ]
N subsets of 0, let T(M,N) = b + Lb + U ()% v, 1t 1s reedily seen
n=0
that 7(M,N) is a language if M and N are. Furthermore, 'r(Ml, 1) c 7(M,N) 1t

M, CMand N, CN. Then

7(0,8) = b + Lb + ; (0p)B¥2an+L
=0

-b+L1b+L2

= L3.
Since D is the only sequence in L3, it follows that T(M,N) contains a sequence

if and only if it contains the sequence D.

Consider T(M,a’) =b + Lb +G (a*b)n+]Hban+1. If this set is to contain
D then it is necessary that M (i) 2onta1n each of the words ¢, ba, ba.bea,
babazba3,.. . (to obtain members in the sequence of the form wba); and (ii) con-
tain each word of the form an+].°an+2_ . .bsnﬂ, nz20,mz1 (to obtain members

in the sequence of the form vban+2

, with m = #o(w)-n-1). Moreover, if M
satisfies (1) and (i1), then it is readily seen that D C T(M,a‘) since

DN 6 CSD + Lyb.

Suppose that M = bP + @@ + ¢. Then (i1) is satisfied; and (1) is satisfied
if and only if P contains the set faba2...ba®/n a 1}. Thus T(M,a") contains a

sequence if and only if P contains {aba°... %/n 2 1}. Therefore we get

Theorem 2.2. If whether a language contains [abaa...ban/n 2 1} 1s unsolvable,

then vhether a language contains a sequence is unsolvable.

()

()
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Suppose that M = P + a'+ b8, Then (1) 1s satisfied, and (1i) is satisfied
for m = 1. Now (ii) holds for every i if and only if P contains each word of

ik

the form a"ba""'l...ba. » 1, k2 1. Thus wve have

14y,

Theorem 2.3. If whether a language contains tatval*l... k2 1) is

unsolvable, then whether a langusge contains a sequence is unsolvable.

We now consider sequences D with the property that there is a language

containing D and no other sequence.

Definition. A sequence D of words with the above property is called a
distinguished sequence.
Since every u.p. sequence is a language, each u.p. sequence is distin-

guished. The sequence D in Theorem 2.1 shows that the converse is not true,

i.e., there are distinguished sequences which are not u.p.

Given a distinguished sequence D we may obtain other distinzuished

sequences as follows. Let S be any complete sequential ms.chine(h) with the

(h)A generalized sequential machine S is a 6-tuple (K,E,A,b,\,pl) vhere (1) K

is a finite nonempty set (of "states"); (1i) T is a finite nonempty set (of
"inputs"); (1i1) A is & finite nonempty set (of "outputs"); (iv) § 1s a mapping
of K x T into K (the "next state" function); (v) A is a mapping of K X T into
0(a) (the "output" function); and (vi) P, is an element of K (the "start"
state). A complete sequential machine is a generalized sequential machine in
vhich A\ maps K X T into A.
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property that at each state, ) maps T one to one into 4. let L be a language
containing & Aistinguished sequence D. Then S(L)(3) is a language [5] con-
taining the sequence S(D). That S(L) contains no sequence but S(D) follows
from \ mapping T one to one into 4. Furthermore, if D is not u.p., neither is
S(D). We omit the straightforwvard details.

The question naturally arises: Are there any sequences vhich are not
distinguished? A simple cardinality argument shows there are. For there are

R
2 ° sequences when T contains at least two elements, and only RO langusages.

R
Thus there exists a sequence D (in fact 2 0) such that any language containing
D contains at least one other sequence, i.e., a sequence D which is not dis-

tinguished. More precisely,
Theorem 2.4, Every distinguished sequence is recursive.

Proof. let LC 6(&1,. ..,&‘) be a given language. We outline an effective
procedureP with the following property: If L contains at least one sequence
{vi'} g 2 1 804 every sequence in L contains v, then P selects w, at the n-th
stage.

Each stage of P is divided into substages. In substage m(2 1) of stage 1,
P determines the finite set

(5)Extend 8 and ) to K x 8(%) as follows. Let 8(q,¢) = q and A\(q,¢) = ¢. For

each word X;...X, ., each x, in L, let “q’xl“'xk-o-l) - 6[6(q,31...xk), *k+1]
and k(q,ﬁ...xkﬂ) = k(q,xl...xk) x[a(q,xl...xk), "k+1]' For each word v, let
S(w) = k(pl,v). For each set L, let 8(L) = {S(w)/w in L}.

O

¢

b b L S A £
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(6

w {w/ |v| «mand Init w )EI.].

Dl,n
It Dl,n is empty, P selects 8, and proceeds to stage 2. If Dl,m is nonempty
and each vord in it begins with the same letter, say by, P selects b, and pro-

ceeds to stage 2. Otherwise P proceeds to substage m + 1.

If L contains at least one sequence and every sequence in L contains bl’

then there must be some m = 1 such that D - is nonempty and contains only words

1,

beginning with b (This follows immediately from the well-known Infinity

l.
Lemma of graph theory [7;p.81]). In this case P completes its first stage and

selects bl.

Suppose that P completes the nth stage (n > 1) singling out 'bl...bn. In

substage m (2 1) of stage n + 1, P determines the finite set

D = fw/ |w| =n +m, Intt wvc L, amd b,...b 18 in Init w}.

n+l,m

Ir D

n+l,m is empty, P selects bl.. 'bn"k and proceeds to stage n + 2. If D

n+l,m
is nonempty and every word in it has the same n + 1"‘ letter, say bn+1’ then P
selects bl' . 'bnbn-i-l and proceeds to stage n + 2. Otherwise P proceeds to sub-
stage m + 1. If L contains at least one sequence and every sequence in L con-
tains bl“‘bn-o-l’ then there must be some m 2 1 such that Dn-o-l,m is nonempty and
contains only words with bn 41 88 its n + Il.'t letter. In this case P completes

st
ite n + 1"~ stage and selects b]."'bn-tl'

(6)!'01' avord v, Infit v » {u/u # ¢, uv = v for some v]. For a set H of words

let Init B = U Initw.
ving
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Suppose that L contains exactly one sequence D. Then P completes the nt‘h
stage for every n and enumerates D. Bince P is an effective procedure, D must

be recursively enumerable. But a sequence is recursively enumeradle if and only

if it is recursive. Hence the result.

The next theorem shows the existence of recursive sequences vhich are not
distinguished. Since the proof involves special concepts, it is given in the

appendix.

Theorem 2.5. Let a be a given element of . Then each recursive, non u.p.

sequence D with the property that for every n > 1 there is a word uak, u#e,

n|ul

in D such that k 2 2 is not distinguished.‘”

In passing, we mention two open problems.
(1) Characterize the set of distinguished sequences.
(2) Characterize the set of those sequences D having the property that

there exists a language containing D but no u.p. sequence.

Section 3. An Equivalence Condition
We now show that the solvability of a langusge containing a sequence is

equivalent to the solvability of a language containing & special kind of chain.

(7)One such sequence D = X,...X ... i8 obtained by letting £(0) = 1, f(n+l) =

f(n) + 2(n+1)f(n)+ 1forn20, x, «bif i 1s in the range of f, and X =8

otherwise.

O
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Theorem 3.1. Call C(P) s counting chain, vhere P is a subset of the positive

integers, if C(P) is the set of those words
k

i
1.4, 4,31, #4 i J
blalp 2l 2, pKdel",

k>1l,suchthat for 1 € J<k, i, =2 1if JisinPand i,K = 1 if J is not in

J J
P. Then the question of whether an arbitrary langusge contains a sequence is
solvable if and only if the question of whether an arbitrary language contains

a counting chain is solvable.

Proof. (1) Let o be the operation which takes each occurrence of b into

{b,bal, and leaves a unchanged. That is, o(¢) = ¢ and o(ﬁ...xr) = c(xl)...a(xr),
where o(a) = a and o(b) = {b,ba}. Let T be the operation which takes each
occurrence of a into Al = fbaan/n 2 1} and each occurrence of b into A2 =
fbtzn"'l/n 2 0}. Since A, and A, are languages, o and T preserve languages, i.e.,
if L 18 a language, so are o(L) and 7(L) [1]. We shall show that for a subset

L of 8, or(L) contains a counting chain if and only if L contains a sequence.
Therefore if it is solvable vhether an arbitrary language contains a counting

chain, then it is solvable vhether an arbitrary language contains a sequence.

To this end let L be a subset of 6. Suppose that L contains a sequence

Da=xy...X.... Foreachnletd =x...x. LetA3-f1} 1fx1-sandA3-
® if x; = b, Let

P=AQ fafna2, x _,=x]}

1, 1 1
For each n, ba “ba b...ba D is in 7(d,) 1f and only if
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t3/3 € n, 1J >0 and even) « (J/j < n, Xy = al.

For each n let u, be the element in 'r(dn) with 4, = lor 2 and 1J+1' 1J+1 or

i =1

J41 +2, 1< jJ<n. Then

J

k, i, k k 1
a(un) «fbtalp%..p0l n/kJ =1,2;1< J < n}.

In particular, o(un) contains an element v, in which k, = 2, 1< § < mn, if and

J
only if 3} is in P. 'musklneifa.naonlyifxl-a. Benceklnil. Further-

more, for each J, kJ+1 = 2 if and only if xJ - x.“l, vhence kJ-a-l - 1J+1° 13.

Thus [viji » 1 18 the counting chain c(P). Since fvi} c a({un}n * 1),

fu} , ,<7(D), and DS L, it follows that C(P) c a7(L).

Now suppose that the counting chain C(P) € o7(L) for some set P of positive

integers. For each n let

n
125

1 1
l. LN ] b n‘J-l

Vn-b

1}
be in C(P). Then there is a unique word 4, in L such that v_ is in c‘r(dn).
In fact, 4 is the word x,...x of length n in 8(a,b) for vhich (1) X =aif
and only if 4, = 2, and (11) for 1 € §< n, Xy -xd+lifandonly1fia+1-2.
It readily follows that [61]1 a 1 18 & sequence in L.

(2) We shall now show that if it is solvable vhether an arbitrary language
contains a sequence, then it is solvable whether an arbitrary language contains

a counting chain. This and (1) will then imply Theorem 3.1.

Let L, be the same as in Theorem 2.1. Let C(P) ve an arbitrary counting
chain. If u is a word in C(P), then from the definition of counting chain,

e s e oS
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u = wba#b("b) for some word v in 8(a,b). Thus bu is in L, for each word u in
C(P). Hence ®C(P) c L.
Let M be a given language over L = {a,b}. let
H, = fo(on)%" (b2 )a™/n 2 11,

H, = ba’ (bst%%e)a + e + 1o,

and M-Hl+32.

As 18 easily seen, nl, 32, and M are languages. Hl consists of all words of

the form

(o) bubanbtap, where t = lor 2, uis in 9, m20, and 2 < p < #b(bubanbt).

—
e 4

¢

Ha consists of all words of the form
8) ba®s% or valba® for t = 1, 2, and m 2 0;

and (y) wmba for t = 1, 2.

Consider the langusge M, = b + b+ b3+ L, (b#%) + M. Ve shall shov that
Ml'conta:lns a sequence if and only if M contains a counting chain. Therefore
if 1t is solvable vhether an arbitrary language contains a sequence, it is

solvable vhether an arbitrary language contains a counting chain.

Suppose that vb is an initial subword of a counting chain C(P). Then
either (1) vw e, (i1) vu b, (114) vis 1nC(P), or (iv) v = vib vith v, in
C(P). Consider bvb. If (i) holds, then bvb = b2, If (ii) holds, then bvb =

b3. If (111) holds, then bv is in 11, so that dvdb is in le. If (iv) holds,
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then bv, 18 in L), so that bvb = bvlba is in 1.1b2. Thus if vb is an initial

subword of a counting chain, then ’b2+ b3+ Ll(b+b2) contributes bvd to Hl

Consider initial subwords va of a counting chain. It is clear that only
M can contribute vords ending in a to M,. Suppose that va is an initial sub-
word of a counting chain. Then bva = bwbtaq, vhere t = 1 or 2, v is a word not
ending in b, and 0 < q < #o(bwb®). If v contains b and q 3 2, then bva is in
M by (). Ifw does not contain b and either q = 1 or q = t = 2, then bva is
in M by (B). Thus neither (@) nor (B) contribute bva to M if and only if bva =

bwlbwebta for some words vy and Vo W not ending in b, t = 1 or 2.

2

Suppose that M contains a counting chain C(P). By the previous discussion,

w,_bla, |

172
t=1lor2, v, 8 vord ending in a. In this case, vlbw2 is in C(P), thus in M.

Ml contains bz for every initial subword z of C(P) except possibly z = w

Then by (y), bz is in M, thus in M. Therefore M) contains bz for every initial
subword z of C(P). Since b is also in Ml, Ml contains every initial sutword of

bC(P). Thus M, contains a sequence.

Now suppose that Ml contains & sequence D. It is easily seen that D begins
with ba. Since neither ba nor b3 is in I‘l’ bu is not in “1 Since b2‘2 is not

1n §, v%a? 1s not in M,. Thus D begins with either bab or boa.

(a) Suppose that D begins with b2ub>, where u is a word ending in a.

Since each word in Ll ends in a, neither baub nor bauba is in L]. Thus baub3

is not in “1’ so that D begins with baubaa.
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(b) Suppose that D begins with b2ub®ad, vhere t = 1 or 2, q > 0, and u is
& vord not ending in b (thus u might be ¢). Two alternatives arise.

(1) q = f#o(bub®). Suppose that D begins with b2ub‘a®*l, men

taatl

q+12a3, so that boub can only be contributed to M, by (). Since q +1 =

#o(d2ub®), 2ub®a8*! cannot be contributed by (). Thus D begins with bubta®b.

(11) q # #(bub®). Since D 1s a sequence, it follows from (1) that
qQ< #b(bubt). Suppose that D begins with b2ub®a%. Then bZubtal is in L,, 80

that q = #b(bubt) » & contradiction. Therefore D begins with baubtl.qﬂ.

From (a) and (b) and the fact that D begins with b°ab or b3a., it follows that
D consists of all initial subwords of bC(P) for some counting chain C(P), with

11, 12,... the exponents of b's in the chain.

Finally, suppose that M does not contain C(P). 1In particular, let
k

™
g,

i, 1
1 S I

X=Db al

1
be in C(P) but not M. Consider y = bxb 5*la. Clearly y is not contributed to

M’l by either (o) or (B). Since x is not in M, y is not contributed to N, by
(y). Tus y is not in M,, contradicting the assumption that M, contains D.
Thus M contains C(P), i.e., M contains a counting chain if and only if M, con-

tains a sequence. Q.E.D.

Remark., While the problem of whether an arbitrary langusge contains a counting
chain is, as yet, unresolved, the problem of whether an arbitrary language con-
tains all counting chains is recursively unsolveble. For let T = {a,b] and let
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o and T be as in Theorem 3.1. For each language L, it is readily seen that
or(L) contains all counting chains if and only if A(a,b)- ¢ C L. Since L=
9(s,b) 18 recursively unsolvable [1], it follows that vhether 6(a,b)- ¢ C L is
recursively unsolvable. Thus vhether ot(L), hence an arbitrary language, con-

tians all counting chains is recursively unsolvable.

Section L. Special Sequences

In this section we consider whether a language L contains a specific
sequence is solvable. We exhibit one set of sequences for vhich it is unsolv-
able and another for which it is solvable. We then show that whether a language

contains a sequence of a special form is unsolvable.

Theorem 4.1. Given a sequence D and language L, it is recursively unsolvable
whether D C L.

Proof. let F be the set of all sequences of the form

Init (cvlcwacw3. )y
@®

where 181 v, = 8(a,b). Given a language M, consider L(M) = Init [(cM)*].(a)
If M = 6(a,b), then D= L(M) for every D in F. If M # 8(a,b), then DC L for
no D in F. Since it is recursively unsolvable vhether M = o(a,b) for an arbi-
trary language M [1], it is recursively unsolvable whether D € L for some

specific (or even one) D in F.

(®)1f L 15 & language, then Init L 1s a langusge [5).

i e i e R R e
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We next show that it is solvable vhether a langusge contains a given u.p.

sequence.

Lemma 4.1, Given words Vys Vo w3, it is recursively solvable vhether an arbi-

»
trary language L contains "1"2'3'

Proof. 1If vy =6, then it is recursively solvable whether wlv3 is in L.
Suppose that "2" ¢. Since wlv;v3 is regular and L is a language, A = wlv;w:’n L
is a language and effectively calculable from L [1]. Since vlw;w3 cLif and
only if A = vlw;vy it suffices to show that whether A and vlw;v3 are equal is
solvable. Let T, (12) be the operation vhich maps a word x into X, if X =
X (x = ’1'3) and into ¢ otherwise. Then A and wlw;v3 are equal if and only
ir 'ra'rl(A) - w;. Now Ta‘fl(A) is a language and effectively calculable from

A [5). Since '2" € Vo = ¥3.oo¥,s ¥y in I. Consider the generalized sequential
machine S = (K,z,(a},b,k,pl), vhere K = {pl,...,pr}, h(pi,y) =¢ fori #r,
x(pr,y) =a, 6(p1,y) =P,y fori<r, amd b(pr,y) =Py, ¥in T, Then
8[121'1(1\)] - fa.k/v; in 7271(1\)}. Since 1'21'1(A) is a language, S['ra'rl(A)] is a
language and effectively calculable from -ra'rl(A) and S [5]. From [4], a
language on one letter is a regular set and is effectively calculable as a
regular set. But A = vlw;w3 if and only if 8[1211(11)] =a'. Now it is solv-
able vhether two regular sets are equal [9]. Thus it is solvable whether

S[’ra‘rl(A)] -a' Hence the result.

Theorem L.2. Given an u.p. sequence D and & language L, it is solvable whether
L contains D,
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Proof. Let D be an u.p. sequence. Then D = Init (v(ll...a'.p)*), s, ing, for
some vord v and some p 2 1. For any language L, D C L if and only if L contains
each of the following p + 1 sets: Init w, v(al...ap)*, val(az...apcl)*,
“‘1"2(53‘ +-8,8,8, )*, ceesVBy . .sp_l(apal. . p-l)” Inclusion of Init w is solve
able because Init w is finite and a language is a recursive set. Each of the
other inclusions is solvable by Lemma 4.1. Thus whether L contains D is

solvable,

We have just seen that whether a language contains a specific u.p. sequence
is solvable. The question arises as to whether a language contains at least

one u.p. sequence with a given period is solvable. We now show that it is not.

Theorem 14.3. Given a language L and non-¢ word v, it is recursively unsolvable ()
wvhether L contains an u.p. sequence with period w, that is, a sequence of the

*
form Init (wlv ).

Proof. let.a, b, and c be three letters not occurring in w. For each positive
integer j denote by J the word a.bJ. For each n-tuple z = (zl,... 2 n) of words

in 6(a,b)-¢ let
L(z) = (zik...zilc 11...ik/k z 1, each i, < n}.

Let A(w) = ¢ + Init v - v. For any two n-tuples x = (xl,...xh) and y =

(yl,. . .,yn) of words in 6(a,b)-¢ let

L(x,y) = Init L(x) + L(x) w(v)"A(v) + L(y) (v?)"A(w).

Suppose that L(x) N L(y) # 9. Let ¥, be an element in L(x) N L(y). Then

*
Init (wlv ) € L(x,y), so that L(x,y) contains an u.p. sequence with period w. ‘ )
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Suppose that L(x,y) contains an u.p. sequence wvith period v. Then there
16 & word v, such that Init (wlw*) g L(x,y). In particular, v,v and w,v° are
in L(x,y). Since L(x) c 8(a,b,c) and v is not in 8(a,b,c), neither w,¥ nor
vlva is in Init L(x). Suppose that w,w and v1w2 both are in L(x)v(va)*A(w).
Since a, b, and ¢ do not occur in w, WV = uw and "1"2 - uwz, with u in

*
L(x) and vw, wo in w(va) A(w). Now for each word t in v(wa)'A(v)

(*) 1t = (2r,+ 1) Iv] + s,

vhere r, is & nonnegative integer, amd O < 8 < lwl- 1. Thus |wl| = (2rw+ 1)

t
|v| + 8. Then

|w?| = fwl + fvl
- (2rw+ 1) fw] + s, 'wl.

Since 0 8, < wl- 1, |w2| 1s not of the form given in (*). Therefore one
of the vords w,v or vlv2 is not in L(x)v(va)*A(w). Similarly one of the words
vyv or v1v2 is not in L(y)(va)*A(w). Thus v,v is in one of the two sets,

L(x)w(va)*A(w) or L(y)(wa)'A(v) , and vlwa is in the other. Therefore v, =
WYy = UVas with u, in L(x), w, in L(y), and Vys Vp in Init (v*) + ¢. Since
uu, and v,v, have no common letters, U, = u, and u, 18 in L(x) N L(y). Thus

L(x) N L(y) # o.

It thus follows that a necessary and sufficient condition that L(x,y)
contain an u.p. sequence with period w is that L(x) N L(y) # ¢. But
L(x) N L(y) # ¢ occurs if and only if there exists a sequence of integers

11’00"1k 80 ﬂl&t xi .-.Xi - yilo'.yiko 31300 the htter 1. thO Po.t

1l k

I}



31 January 1963 «2h- T™-738/001/00

Correspondence Problem and is known to be recursively unsolvable [8], whether

L(x,y) contains an u.p. sequence of period w is recursively unsolvable.

Remark. The family of langusges L(x) of Theorem 4.3 is also useful in showing
the following questions about sequences and an arbitrary language L to be

recursively unsolvable:

(1) Whether L contains a sequence containing a fixed letter. For let d
*
be a letter not occurring in L(x) + L(y) and consider [Init L(x)](de) +

lInit L(y)la(a®)".

(2) whether L contains a purely periodic sequence.(9) For let d be a

letter not occurring in L(x) + L(y) and consider Init [dL(x)(dL(y))*].

We conclude with a remark on the unsolvability of vhether a language con-
tains an u.p. sequence. let D, Ll, and L3 be as in Theorem 2.1. It follows
from the proof of Theorem 2.1 that, for any word v in 8(a,b), Init w C L3 ir
and only if w 18 in D. Let T be the operation such that for each word u, T(u) =
u if the letter c occurs in u, and T(u) = ¢ otherwise. If L is a language, then

T(L) 18 a language [5]. Thus 7(Init L(x)) 1s a language. Consider the language
M(x,y) = Lo+ L(x)(a%)*+ L(y)a(a®)™+ r(Init L(x)).

Then M(x,y) contains an u.p. sequence if and only if there exist integers

11""’11&’ each 1.) < n, so that X, creXy

=¥y ...:,'1 and this word is in D.
1l 1l k

k

(9)1\ sequence of words D = XeeeXpeen is said to be purely periodic if there
exists an integer m 2 1 so that Xim® X for all 1 2 1,

-
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In other words, vhether a language contains an u.p. sequence is recursively
unsolvable if the following modification of the Post Correspondence Problem is
true: Given two n-tuples (xl,...,xn) and (yl,...,yn) of words in 6(a,b)-¢, it
is recursively unsolvable vhether there is a sequence of integers 11,. .o ’1k’

=¥ ...y1 and x1 ...xi begins the sequence
1l k 1l

each 1.1 < n, so that x1 ...xi .

1 i
bhaba‘bal. .. .
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APPENDIX

Proof. We first recall some terminology and facts about generation trees. Let
G = (V,P,£,5) be a grammar. Call the elements of V-L variables. lLet v bea
variable. lLet w,,...,w_ be words in o(v), V), = v, & production, vith the follov-
ing property. For 2 £ 1 € r there exist words Uy, Ves Vs Ty such that v =

WYy Vs Wyy = UZ,V,, 8nd y, =z, is a production. A generation tree (con-
structed below) is a rooted, directed tree with an element of V U{¢}, called

the node name, associated at each node,

The nodes of the tree are certain tuples of the form (11,... »1 vhere

s
k<rand i 3 is a positive integer. The directed lines of the tree are all the
ordered pairs ((11,...,1k), (11,...,1k, 1k+l)) of nodes. Let the l-tuple (1)
be the root and w, the node name of (1). 1¢r vy = ¢ let (1,1) ve a node in the
(2) _(2) (2)

tree and ¢ the node name of (1,1). If Vo =X e Xi00)s each x,“" in V, let
(1,1), 1 <4 < n(2), be a node and xia) its node name. Continuing by induction,
suppose that for all t £ k, every occurrence in v, of an element of V serves as

node name of some node. Now

(%) ueyeve = i ® Vi = ke
Let (11,...,1‘) be the node vhose node name is the occurrence of ¥y indicated
in (*). 1I1r z, = ¢ let (11,...,1‘,1) be a node and ¢ its node name. 1If z, =
zﬁ(.k)...xr(‘l(‘l)‘), each xik) 10V, let (1),...,1,,1), 15 1 < n(k), be a node amd
xik) its node name. This procedure is repeated through k = r-1. The resulting

entity is the generation tree.

O
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A node (Jl’”‘"’t) 18 said to be an extension of the node (11,...,1.) ir

sstandik-,jkfora.llkSs.

A path in a generation tree is a sequence of nodes Nl,.. . ,Rk such that

(ai, N, +1) is a directed line for each i < k-1.

Given the nodes N, = (11""’13) and N, = (Jl,...,,jt) vrite K, < N, if
either 1'2 is an extension of Nl or if :I.k < "k for the smallest integer k such
that 1, # Iy

The relation £ is a simple order on the set of nodes.

A node is called maximal if there is no node distinct from it which is an

extension of it.

We shall use (implicitly and explicitly) the following known facts about

a generation tree T associated with § = w l1]:

(a) If N is & nonmaximal node, then the node name x of N is a variable

and ¢ = uxv for some u and v in 6(V).

(b) LlLet Ny,...,H, be the maximal nodes, vith N, < N, ,

w is the vord obtained by replacing in “1' ..l!k each node with its node name.

for each 1. Then

(¢c) Let N be a nonmaximal node in a generation tree, and x its node name.
Then the "subtree" of T formed by using as nodes all extensions of N is a

generation tree.

() Let v = uyv and let T, be & generation tree of y = w;. If T, is
placed (in the obvious way) vith its root on the node whose node name is y in

uyv, then a generation tree of § = uw,v is obtained.

-
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We now return to the proof of Theorem 2.5. let D be a sequence satisfying
the hypothesis of the theorem. Let L be any language containing D. We shall
show that D contains an u.p. sequence. Consider the set L’ = L-{¢}-L. L’ s s
language and there is a grammar G = (V,P,T,5), L(G) = L’, such that every pro-
duction in P is of the form £ = uv, » and v in V [1]. Let N denote the number
of distinct variables. Let H be the set of those variables § such that § =
a®ga® for some s + t > 0. Let H, be the set of those € in H such that § = gat
for some t > 0. [We can effectively determine E and H,, but ve do not need
this fact.] We shall see below that H is nonempty. Denote the distinct elements
of Hby §,...,8,.. For each §, in H, let e(i) > O be an integer such that
g, = giae(i). For each §, i H-E, let e(1) > 0, 8(1), t(i) be integers such

that e(i) = s(1) + t(1) and gi » as(i)giat(i). let e = e(1l)...e(r). ‘)

Consider any word uaX in D, vhere u f ¢ and k 2 2(2“””“‘.

We shall show
that Init (ua') C L, thereby proving the theorem. Since Init (ua¥) €bcl,

it suffices to show that ual 1s in L(G) for each q > k. Accordingly, let q > k
be given and let p = |ul. Then k2P 2 p(BW4e)p_2Mp | Mpep y) , 5200,
2 2%P > ep 2 e. Therefore there is a positive integer g such that 22'P <

q-ge < k. Then ua%€® 1g in Init (ua®) ama |ua%7€®| 2 2. Thus ua%€® is 4n

L(G). Hence there is a generation tree T of g which derives ual™€® (from 8).

Since each production is of the form § = wv, w and v in V, it is readily seen
that any generation tree of G of a word of length > 2" contains a path with at

least n+l nodes, vhere each node name is a variable. Now |ua.q'3°| > q-ge > 22”:

+1
En(p ). Thus T contains a path zl,...,z“(wlm, vhere the node name of each

¢
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2.1 is a variable. Since there are only K distinct variables, one of them, say
£, is the node name of at least p + 2 nodes. Denote by Yl""”!p-o-e the first

P + 2 nodes in the path wvhose node name is €. For 1 € i < p+2, lct‘ribethe
subtree of T whose nodes are the extensions of Yi‘ Then Ti is a generation tree
(from £) of & word vy in 9(Z)-c. For 1 < i < p+l, since the node Y,,, occurs
in T,, there ere words X,, y, in 8(T) such that € = x,8y, and v, = X, v, .¥,.

Since each production is of the form v ~pv, y and v in V, xiyif ¢. Since Y,

P I T

1s in T, there exist w,, v, in 6(V) such that § = w.€v,. Thus ual°6¢
VX .xp+1vp+2yp+1. ALY
Two cases arise.

(1) Suppose that one of the X, 15 ¢. Let j be the smallest integer such

that x.j

vp+2yp+l"°y,j+1‘ 2 p+l-j. Thus |x1...ya+1| 2 p, 80 that u is an initial sub-

= ¢. Then le...xj_ll 2 J-1. Since x,y,# ¢ for each i, |xJ+1...xp+1

»
vo:d of lel"’y.j-o-l' Therefore yJ isina . As Xy = ¢, yJ£ ¢. Thus Yy is in
aa . Since € = x Ey , € is in Hl, say € = ;d. Now e is a multiple of e(d).
Thus & = gne(d)ge/e(d) = ga.ge and

= wlxl...xJQyJ...ylva
=» lelo oe Jgagey‘jo . oylva
»w ere v Yy .gey Y.V,
19 X Vpe¥par Yy Yy Vo
= u‘q-geage - uaq.

(2) Suppose that none of the x, is ¢, Then |"1""‘p| 2 p, 80 that u is
»
an initial subword of "J.xl""&:‘ Thus xp +1vp +2yp+1...y1v2 is in aa . Then
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g » :&, +1§yp+l, with xp+1yp+1 in u’. Therefore £ 12 in H, say £ = gd. Then
there exist nonnegative integers s and t 80 that € =» a'gat and e(d) = 58 + t.
Thus

S = VX, .xpgyp. < ¥1¥

» VX .xp‘sge/e(d)gatge/e(d)yp. AL

» WXy xpa.’ge/ °(d)x p+1'p+2Yp +1at8°/ e(a )yp. AL

=V X VoY ‘yl"a‘(“t )ge/e(a)

since xp *l...ylvaa(“t)se/ e(d) is in u*
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